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Abstract  —  A SPICE-based direct shooting-Newton 

method for the determination of the steady-state response of 
RF circuits has been developed. Different Krylov-subspace 
methods, including GMRES, CGS, BiCG, QMR, and 
BiCGSTAB, were used to solve the iterative equations 
generated by the shooting-Newton algorithm. The public-
domain circuit simulator, SPICE, was used for the 
implementation of the new steady-state analysis. Compared 
to standard transient analysis for the determination of the 
steady-state response for non-linear circuits encountered in 
RF design, this new method is much more efficient. RF 
circuits that are difficult to simulate are evaluated. For larger 
circuits, the GMRES, QMR, and BiCGSTAB algorithms 
show the most improvement in the time to calculate the 
steady-state. 

I. INTRODUCTION 

Given today’s increasing demand for communication 
devices, including cellular telephones and other cordless 
devices, more effective methods are needed to examine 
integrated circuits that make up these devices in the 
steady-state mode. Quantities such as power, distortion, 
and noise are evaluated in the steady-state and need to be 
studied in detail [1]. Standard simulators, such as SPICE, 
can use transient analysis to determine the steady-state 
response by simulating until all the transients have died 
out. Unfortunately, for the type of circuits used in 
communication devices, this takes much too long for a 
detailed analysis to be made. Harmonic balance methods 
are not optimal for strongly non-linear circuits that we 
need to evaluate. Direct time-domain methods are a good 
choice for steady-state determination [2]-[3].  

 For SPICE-based circuit simulators, the time-domain 
shooting-Newton method is relatively easy to implement 
[4]-[5]. The direct shooting-Newton method of steady-
state determination was proposed by Aprille and Tricke 
[2], and when implemented in an older version of SPICE 
[4], used the traditional Gaussian elimination to solve the 
iterate. Because of the computation costs, this limited the 
use of the algorithm to relatively small circuits. The newer 
Krylov-subspace methods can solve these equations 

generated by the steady-state response determination with 
much greater efficiency.  The Krylov-subspace method of 
GMRES has been implemented with the direct shooting-
Newton method [6]. However, it is not implemented in 
public-domain software, and does not include other 
Krylov-subspace methods for comparison. 

There are two parts to this new method. First, the direct 
approach to steady-state determination is implemented in 
SPICE, second, several different Krylov-subspace 
methods, including BiCG and QMR are used to solve the 
iterate generated by the direct method [5]. Examples from 
microwave circuits are used to illustrate the new method. 

II. STEADY-STATE DETERMINATION  

 The shooting-Newton direct method of steady-state 
determination for circuits with periodic input was 
implemented in SPICE 3f5. In addition, the Krylov-
subspace methods were also implemented in SPICE 3f5 
for the solution of the iterate generated by that method. 
Direct methods, such as the shooting-Newton method 
presented here, were used to find the initial state needed to 
put the circuit directly in steady-state [2]. If the circuit 
equations are represented as the system: 

 ),( txfx = ’ (1) 

where x and f are n vectors, the vector f is periodic in time, 
t, and has a period of T. A constraint for achieving steady-
state is that the transient effects have died off. This is 
represented by: 

 )()0( Txx = . (2) 

In other words, the solution at the end of the period is the 
same as the condition at the beginning of the period. This 
means that the circuit is in steady-state. The state transition 
function can be used to define the two-point boundary 
value problem, thus: 

 0),),(()0( 00 =− Tttxx φ  (3) 
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where φ is the state transition function. The state transition 
function was implicitly derived; it was calculated at each 
timepoint until the end of the period. It is dependent on the 
initial state, x0, the period of the response, T, and the 
starting time, t0. We applied the shooting-Newton method 
to solve the boundary value problem that results in the 
following iteration: 

 [ ] [ ]),),(()()( 000
1

0
1

0 Ttttt kkk xxJIxx φφ −−−= −+ ,(4) 

where k is the iteration index and Jφ is the sensitivity 
matrix represented by:   

 ),),(( 00 Ttt
dx
d xJ φφ =  (5) 

The sensitivity matrix was computed at the same time as 
the state transition function. Quantities needed for the 
calculation of the sensitivity matrix were already available 
at each timepoint from the transient analysis. The forming 
of the sensitivity matrix is computationally expensive. The 
iterate was solved and, using a user-defined limit, was 
considered converged. If not, the circuit was resimulated 
and another initial guess was used [2]-[4]. This process 
was continued until the steady-state was reached. The 
shooting-Newton method computed a set of capacitor 
voltages and inductor currents for the circuit so that if 
these voltages and currents are used as the initial 
conditions for the transient analysis, the circuit is directly 
in steady-state. 

 The accuracy of the direct steady-state determination 
and the accuracy of the Krylov-subspace methods are 
shown in Fig. 1.  

The circuit simulated is a DC to 1 GHz class AB 
amplifier [7]. This circuit is difficult to simulate because 
the bias circuitry transients take a long time to settle out.  
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Fig. 1. Two periods of the transient analysis of the Class AB 
amplifier [7] in steady-state. The curves for all the methods lie 
on top of each other, as they should.  

II. KRYLOV-SUBSPACE METHODS 

The Krylov-subspace methods of GMRES, BiCG, 
QMR, CGS, and BiCGSTAB were incorporated into 
SPICE 3f5 for the solution of the linear system of 
equations generated by the shooting-Newton method to 
determine the steady-state response [8]. These methods are 
for general matrices, including the type that is generated 
by the shooting-Newton iteration (non-symmetric) [8]. In 
the following subsections, equation (4) was solved. The 
matrix being referred to is the sensitivity matrix φJ . 

The convergence figures were generated using a 
common-base Class C amplifier [9] operated at microwave 
frequencies. Appropriate changes were made to the 
original circuit for microwave operation. The circuit 
contained a total of 11 capacitors and inductors. The 
residual error was calculated within the Krylov-subspace 
method. The circuit was difficult to simulate using 
transient analysis because the biasing circuitry takes 
thousands of cycles for the transients to settle out. 

A. GMRES 

The Generalized Minimal Residual (GMRES) method 
generated a sequence of orthogonal vectors. The vectors 
were generated using a special method for Krylov-
subspaces called the Arnoldi method. It used these vectors 
to do a least squares solution. One drawback of this 
method is that all the orthogonal vectors must be stored. 
So for large circuits, this storage need could be very large. 
It used the actual matrix and not its transpose for solution. 
The convergence behavior for the Class C amplifier is 
shown in Fig. 2.    
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Fig. 2. Convergence behavior for Krylov-subspace method 
GMRES. 
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B. BiCG  

BiCG is the Biconjugate Gradient method. It generated 
two sequences of vectors that are made mutually 
orthogonal to each other called bi-orthogonal. One of the 
sequences was generated by the original coefficient matrix, 
and the other by the transpose of that matrix. It used much 
less storage than GMRES, but had problems with 
convergence, and had two matrix-vectors products at each 
iteration. Fig. 3 shows its convergence behavior for the 
microwave example circuit. 
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Fig. 3. Convergence behavior for Krylov-subspace method, 
BiCG. 

C. QMR  

The Quasi-Minimal Residual (QMR) method applied a 
least-squares solve and update to the BiCG residuals. 
QMR uses less storage than GMRES. It required matrix-
vector multiplications of the original matrix and its 
transpose at each iteration step. Fig. 4 shows the 
convergence behavior for the QMR solution.   
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Fig. 4. Convergence behavior for the Krylov-subspace method 
QMR. 

D.  CGS  

The Conjugate Gradient Squared (CGS) method is a 
variant of BiCG. It reformulated BiCG so that only the 
original matrix was needed and avoided transpose vector 
operations. Fig. 5 shows the convergence behavior for the 
BiCG solution. 

1 2 3 4 5 6 7 8 9 10 11
10

-10

10
-5

10
0

10
5

Number of Iterations
R

el
at

iv
e 

R
es

id
ua

l N
or

m
 

Fig. 5 Convergence behavior for Krylov-subspace method of 
CGS. 

E. BiCGSTAB 

 Biconjugate Gradient Stabilized (BiCGSTAB) method 
is a variant of BiCG that used different updates to avoid 
using the transpose of the matrix. The convergence 
behavior for the example is shown in Fig. 6. 

1 2 3 4 5 6 7 8 9 10 11
10

-10

10
-5

10
0

10
5

Number of Iterations

R
el

at
iv

e 
R

es
id

ua
l N

or
m

 
Fig. 6  Convergence behavior for the Krylov-subspace method 
BiCGSTAB. 

III. RESULTS 

In SPICE 3f5, the direct steady-state determination 
using the shooting-Newton method resulted in significant 
savings in computational time and resources (Table 1). 
The shooting-Newton method is also an accurate way to 
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determine the steady-state response (Fig. 1). The system is 
in steady-state when the error is less than the user-
specified value. The error measured was obtained using 
the maximum difference between the state of the circuit 
after a cycle of transient analysis and the initial state used 
for that cycle. Even greater efficiency was found using the 
Krylov-subspace methods for solution of the iterate 
generated by this method (Table 1).   

 
Table 1. Summary of Krylov-subspace methods and 

transient analysis results of steady-state determination for 
a Class C amplifier. 

Method Used 
for Steady-

State 
Determination 

Time  
(Seconds) 
To Reach  

Steady-State  

Shooting- 
Newton 

 Iterations 

Transient 
Analysis  
Cycles 

Transient 
 analysis 

67.8 - >3000 

Gaussian 
 Elimination   

1.76 26 35 

GMRES 1.53 26 35 
CGS 1.68    26 35 
BiCG 1.79 26 35 

BiCGSTAB 1.53 26 35 
QMR 1.53 26 35 

 
The convergence behavior (Fig. 2 through Fig. 6) for the 

solution of the iterate, generated by the shooting-Newton, 
pointed out the difficulty in convergence for some the 
Krylov-subspace methods. For some methods, such as 
CGS and BiCG, the residual is not reduced at each step of 
the iteration. The GMRES, QMR and BiCGSTAB 
algorithms converged the fastest. CGS also had fast 
convergence, but its convergence was very irregular. 

V. CONCLUSION 

The shooting-Newton direct steady-state determination 
was implemented in SPICE 3f5.  The iterate generated by 
the method can be solved by using standard Gaussian 
elimination, or the different Krylov-subspace methods of 
GMRES, BiCG, QMR, CGS, and BiCGSTAB.   

The direct method of steady-state determination is 
shown to be efficient and accurate (Fig. 1) when analyzing 
RF circuits that have difficulty in the standard transient 
analysis available in SPICE 3f5 (Table 1). This efficiency 
means shorter simulation times and less computer storage 
needs.   

The Krylov-subspace methods make for even greater 
computer efficiency (Table 1). All the Krylov methods are 

much faster than the transient analysis approach of 
simulation until all the transients have died out. The 
Krylov-subspace methods give mixed results in terms of 
efficiency (Table 1) over the standard solution method of 
Gaussian elimination. The GMRES, QMR and 
BiCGSTAB algorithms show the fastest convergence to 
solution.  Analysis with larger RF circuits is needed in 
order to investigate whether one Krylov-subspace method 
would be more computationally efficient in terms of 
storage and operation count for RF circuits. 

The direct steady-state determination using Krylov-
subspace methods was shown to be an efficient and 
accurate method.  Its application to larger RF circuits 
should result in even greater computer resource savings.   
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