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Abstract — A SPICE-based direct shooting-Newton
method for the determination of the steady-state response of
RF circuits has been developed. Different Krylov-subspace
methods, including GMRES, CGS, BiCG, QMR, and
BiCGSTAB, were used to solve the iterative equations
generated by the shooting-Newton algorithm. The public-
domain circuit simulator, SPICE, was used for the
implementation of the new steady-state analysis. Compared
to standard transient analysis for the determination of the
steady-state response for non-linear circuits encountered in
RF design, this new method is much more efficient. RF
circuits that are difficult to simulate are evaluated. For larger
circuits, the GMRES, QMR, and BiCGSTAB algorithms
show the most improvement in the time to calculate the
steady-state.

1. INTRODUCTION

Given today’s increasing demand for communication
devices, including cellular telephones and other cordless
devices, more effective methods are needed to examine
integrated circuits that make up these devices in the
steady-state mode. Quantities such as power, distortion,
and noise are evaluated in the steady-state and need to be
studied in detail [1]. Standard simulators, such as SPICE,
can use transient analysis to determine the steady-state
response by simulating until all the transients have died
out. Unfortunately, for the type of circuits used in
communication devices, this takes much too long for a
detailed analysis to be made. Harmonic balance methods
are not optimal for strongly non-linear circuits that we
need to evaluate. Direct time-domain methods are a good
choice for steady-state determination [2]-[3].

For SPICE-based circuit simulators, the time-domain
shooting-Newton method is relatively easy to implement
[4]-[5]. The direct shooting-Newton method of steady-
state determination was proposed by Aprille and Tricke
[2], and when implemented in an older version of SPICE
[4], used the traditional Gaussian elimination to solve the
iterate. Because of the computation costs, this limited the
use of the algorithm to relatively small circuits. The newer
Krylov-subspace methods can solve these equations

generated by the steady-state response determination with
much greater efficiency. The Krylov-subspace method of
GMRES has been implemented with the direct shooting-
Newton method [6]. However, it is not implemented in
public-domain software, and does not include other
Krylov-subspace methods for comparison.

There are two parts to this new method. First, the direct
approach to steady-state determination is implemented in
SPICE, second, several different Krylov-subspace
methods, including BiCG and QMR are used to solve the
iterate generated by the direct method [5]. Examples from
microwave circuits are used to illustrate the new method.

II. STEADY-STATE DETERMINATION

The shooting-Newton direct method of steady-state
determination for circuits with periodic input was
implemented in SPICE 3f5. In addition, the Krylov-
subspace methods were also implemented in SPICE 3f5
for the solution of the iterate generated by that method.
Direct methods, such as the shooting-Newton method
presented here, were used to find the initial state needed to
put the circuit directly in steady-state [2]. If the circuit
equations are represented as the system:

x=f(x,1)» (D

where x and f are n vectors, the vector f is periodic in time,
t, and has a period of T. A constraint for achieving steady-
state is that the transient effects have died off. This is
represented by:

x(0) =x(T)_ (2)

In other words, the solution at the end of the period is the
same as the condition at the beginning of the period. This
means that the circuit is in steady-state. The state transition
function can be used to define the two-point boundary
value problem, thus:

x(0)=9(x(t9). 19, T) =0 3)
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where ¢ is the state transition function. The state transition
function was implicitly derived; it was calculated at each
timepoint until the end of the period. It is dependent on the
initial state, Xy, the period of the response, T, and the
starting time, to. We applied the shooting-Newton method
to solve the boundary value problem that results in the
following iteration:

xo(0 = x00F ~[1=3, ' [xo* —0(xt0), 10, 7)) 4)

where k is the iteration index and J, is the sensitivity
matrix represented by:

1, =%¢(x(to),ro,T> )

The sensitivity matrix was computed at the same time as
the state transition function. Quantities needed for the
calculation of the sensitivity matrix were already available
at each timepoint from the transient analysis. The forming
of the sensitivity matrix is computationally expensive. The
iterate was solved and, using a user-defined limit, was
considered converged. If not, the circuit was resimulated
and another initial guess was used [2]-[4]. This process
was continued until the steady-state was reached. The
shooting-Newton method computed a set of capacitor
voltages and inductor currents for the circuit so that if
these voltages and currents are used as the initial
conditions for the transient analysis, the circuit is directly
in steady-state.

The accuracy of the direct steady-state determination
and the accuracy of the Krylov-subspace methods are
shown in Fig. 1.

The circuit simulated is a DC to 1 GHz class AB
amplifier [7]. This circuit is difficult to simulate because
the bias circuitry transients take a long time to settle out.
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Fig. 1. Two periods of the transient analysis of the Class AB
amplifier [7] in steady-state. The curves for all the methods lie
on top of each other, as they should.

II. KRYLOV-SUBSPACE METHODS

The Krylov-subspace methods of GMRES, BiCG,
QMR, CGS, and BiCGSTAB were incorporated into
SPICE 3f5 for the solution of the linear system of
equations generated by the shooting-Newton method to
determine the steady-state response [8]. These methods are
for general matrices, including the type that is generated
by the shooting-Newton iteration (non-symmetric) [8]. In
the following subsections, equation (4) was solved. The
matrix being referred to is the sensitivity matrix J ;.

The convergence figures were generated using a
common-base Class C amplifier [9] operated at microwave
frequencies. Appropriate changes were made to the
original circuit for microwave operation. The circuit
contained a total of 11 capacitors and inductors. The
residual error was calculated within the Krylov-subspace
method. The circuit was difficult to simulate using
transient analysis because the biasing circuitry takes
thousands of cycles for the transients to settle out.

A. GMRES

The Generalized Minimal Residual (GMRES) method
generated a sequence of orthogonal vectors. The vectors
were generated using a special method for Krylov-
subspaces called the Arnoldi method. It used these vectors
to do a least squares solution. One drawback of this
method is that all the orthogonal vectors must be stored.
So for large circuits, this storage need could be very large.
It used the actual matrix and not its transpose for solution.
The convergence behavior for the Class C amplifier is
shown in Fig. 2.
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Fig. 2. Convergence behavior for Krylov-subspace method
GMRES.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



B. BiCG

BiCG is the Biconjugate Gradient method. It generated
two sequences of vectors that are made mutually
orthogonal to each other called bi-orthogonal. One of the
sequences was generated by the original coefficient matrix,
and the other by the transpose of that matrix. It used much
less storage than GMRES, but had problems with
convergence, and had two matrix-vectors products at each
iteration. Fig. 3 shows its convergence behavior for the
microwave example circuit.
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Fig. 3. Convergence behavior for Krylov-subspace method,
BiCG.
C. OMR

The Quasi-Minimal Residual (QMR) method applied a
least-squares solve and update to the BiCG residuals.
QMR uses less storage than GMRES. It required matrix-
vector multiplications of the original matrix and its
transpose at each iteration step. Fig. 4 shows the
convergence behavior for the QMR solution.
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Fig. 4.  Convergence behavior for the Krylov-subspace method
QMR.

D. CGS

The Conjugate Gradient Squared (CGS) method is a
variant of BiCG. It reformulated BiCG so that only the
original matrix was needed and avoided transpose vector
operations. Fig. 5 shows the convergence behavior for the
BiCG solution.

5

£

o

Z 0

— 10

©

]

5]

)

o)

e

Q 10°

ks

3]

o

10" . . . . . . ) . .
1 2 3 4 5 6 7 8 9 10 11
Number of Iterations

Fig.5  Convergence behavior for Krylov-subspace method of
CGS.
E. BiCGSTAB

Biconjugate Gradient Stabilized (BiCGSTAB) method
is a variant of BiCG that used different updates to avoid
using the transpose of the matrix. The convergence
behavior for the example is shown in Fig. 6.
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Fig. 6 Convergence behavior for the Krylov-subspace method
BiCGSTAB.

III. RESULTS

In SPICE 3f5, the direct steady-state determination
using the shooting-Newton method resulted in significant
savings in computational time and resources (Table 1).
The shooting-Newton method is also an accurate way to
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determine the steady-state response (Fig. 1). The system is
in steady-state when the error is less than the user-
specified value. The error measured was obtained using
the maximum difference between the state of the circuit
after a cycle of transient analysis and the initial state used
for that cycle. Even greater efficiency was found using the
Krylov-subspace methods for solution of the iterate
generated by this method (Table 1).

Table 1. Summary of Krylov-subspace methods and
transient analysis results of steady-state determination for

a Class C amplifier.
Method Used Time Shooting- Transient
for Steady- (Seconds) Newton Analysis
State To Reach Iterations Cycles
Determination | Steady-State
Transient 67.8 - >3000
analysis
Gaussian 1.76 26 35
Elimination
GMRES 1.53 26 35
CGS 1.68 26 35
BiCG 1.79 26 35
BiCGSTAB 1.53 26 35
QMR 1.53 26 35

The convergence behavior (Fig. 2 through Fig. 6) for the
solution of the iterate, generated by the shooting-Newton,
pointed out the difficulty in convergence for some the
Krylov-subspace methods. For some methods, such as
CGS and BiCQG, the residual is not reduced at each step of
the iteration. The GMRES, QMR and BiCGSTAB
algorithms converged the fastest. CGS also had fast
convergence, but its convergence was very irregular.

V. CONCLUSION

The shooting-Newton direct steady-state determination
was implemented in SPICE 3f5. The iterate generated by
the method can be solved by using standard Gaussian
elimination, or the different Krylov-subspace methods of
GMRES, BiCG, QMR, CGS, and BiCGSTAB.

The direct method of steady-state determination is
shown to be efficient and accurate (Fig. 1) when analyzing
RF circuits that have difficulty in the standard transient
analysis available in SPICE 3f5 (Table 1). This efficiency
means shorter simulation times and less computer storage
needs.

The Krylov-subspace methods make for even greater
computer efficiency (Table 1). All the Krylov methods are

much faster than the transient analysis approach of
simulation until all the transients have died out. The
Krylov-subspace methods give mixed results in terms of
efficiency (Table 1) over the standard solution method of
Gaussian  elimination. The GMRES, QMR and
BiCGSTAB algorithms show the fastest convergence to
solution. Analysis with larger RF circuits is needed in
order to investigate whether one Krylov-subspace method
would be more computationally efficient in terms of
storage and operation count for RF circuits.

The direct steady-state determination using Krylov-
subspace methods was shown to be an efficient and
accurate method. Its application to larger RF circuits
should result in even greater computer resource savings.
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